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Abstract

In this paper we analyze the propagation of shocks originating in sectors that are not

present in a baseline dynamic stochastic general equilibrium (DSGE) model. Specif-

ically, we proxy the missing sector through a small set of factors, that feed into the

structural shocks of the DSGE model to create correlated disturbances. We estimate

the factor structure by matching impulse responses of the augmented DSGE model to

those generated by an auxiliary model. We apply this methodology to track the e�ects

of oil shocks and housing demand shocks in models without energy and housing sectors.
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1 Introduction

Over the past decade, there has been a marked increase in the use of dynamic stochastic

general equilibrium (DSGE) models in policy institutions. The seminal work of Smets and

Wouters (2003, 2007) is regarded by many as a proof of concept that medium-scale DSGE

models can be useful tools for policy analysis (Sims, 2008). Smets and Wouters (2007), SW

henceforth, showed that models of this type could deliver reasonable forecast performance

as well as the story-telling capabilities that �ow from explicit assumptions about the op-

timization decisions of economic agents. Indeed, a number of central banks have recently

developed operational policy models based on this blueprint.1

Though DSGE models in use at central banks follow the approach pioneered by SW, they

dwarf them in scale. While the SW model is estimated on seven data series, operational

models are designed to explain the behavior of two to three times as many data series. One

reason why operational central bank models are larger than their academic counterparts

surely stems from policymakers' desire to have detailed and comprehensive discussions about

a large number of shocks and transmission channels.

But all models, regardless of size, are misspeci�ed. For example, DSGE models in use

at central banks typically contain only basic modelling of �nancial frictions, banking, and

the labor market. This is not to say that models with such features do not exist. Indeed,

research on these issues is currently a very fertile area, and one response to the observation

that operational models exclude some channels and mechanisms of interest is to expand them

accordingly. Naturally, there are some di�culties associated with this approach: if the model

is to be estimated, then computational considerations place a (practical) upper bound on the

number of observable variables; and larger models are inherently harder to understand and

explain to busy policymakers. But even if this strategy is a desirable long-term objective, in

1Prominent examples include the Federal Reserve Board's EDO model (Chung et al., 2010), the RAMSES
model developed at Sveriges Riksbank (Adolfson et al., 2007), the NAWM model of the European Central
Bank (Christo�el et al., 2008), the Norges Bank's NEMO (Brubakk et al., 2006), and the Bank of Spain's
MEDEA (Burriel et al., 2010).
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the short run it is possible that the economic issues relevant for policy discussions develop

more quickly than the operational models used to support those discussions. For instance,

during the �nancial crisis policy-makers were interested in the e�ects of �nancial shocks

and the interaction between the �nancial sector, the macro-economy, and the conduct of

monetary and �scal policy. Re-designing the policy models from scratch to inform policy-

makers would have been too costly, and more importantly, too slow.

In this paper, we describe a practical approach for modelling the propagation of shocks

originating in sectors that are not included in a baseline estimated DSGE model (henceforth

the policy model) used for forecasting and policy analysis. As an example, suppose that

policy-makers want to know how an increase in house prices due to unexpectedly strong

demand for housing might a�ect GDP growth and in�ation. Unfortunately, their policy

model does not contain a housing sector. Our procedure works as follows.2

First, we identify a shock to the housing sector and the associated impulse response

functions (IRFs) using an auxiliary model. In our example, we identify a shock in house prices

using a structural vector autoregression (SVAR) as in Iacoviello (2005). More generally, we

select a suitable auxiliary model that is able to capture the dynamic response of a (sub)set

of variables that have a clear counterpart in the policy model. Auxiliary models could be

smaller DSGE models, SVARs, or forecasting models already in use within the central bank.

Impulse responses do not necessarily have to come from a formal model. For instance,

they might re�ect institutional knowledge, including the policy-makers' views, or �ndings

documented in memos and policy reports written within the organization.

Second, we introduce the missing housing sector in the policy model through some ob-

servable variables and, if necessary, a small set of unobserved factors, which we model as a

reduced-form VAR. We allow both the observable variables and the factors to feed into the

exogenous processes of the policy model to create correlated disturbances. The unobserved

factors capture propagation mechanisms that are speci�c to the housing sector and are not

2We implement this exercise in Section 5.
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present in the policy model.

Third, we estimate the additional parameters in the augmented policy model by matching

its impulse responses to those generated by the auxiliary model. We do not re-estimate the

deep parameters of the policy model because re-estimation of the entire model could create

identi�cation problems and would make the method inapplicable in a short time frame.

Impulse responses from the auxiliary model capture the likely propagation of the shock of

interest, summarizing moments in the data that are a�ected by the additional parameters.

We use our methodology to study the propagation of two missing shocks in a three-

equation New Keynesian (NK) model (Clarida et al., 1999). We consider two examples in

which data used in the estimation exercise are simulated from larger DSGE models. In the

�rst example, the data generating process (DGP) is the oil model of Nakov and Pescatori

(2010b). In the second example, the DGP is the housing model of Iacoviello (2005).

We �nd that oil shocks are propagated as correlated disturbances to technology and price

mark-up, without relying on unobserved factors. Instead, the NK model does a poor job at

propagating house demand shocks without relying on unobserved factors. The reason is that

this simple model misses the �nancial accelerator mechanism present in Iacoviello (2005),

which provides hump-shaped and persistent dynamic responses. We are able to capture

such mechanisms through two unobserved factors, loading either on the technology or the

mark-up process. We show that the policy implications derived from the augmented policy

model are similar to those derived from the DGP.

We also provide an empirical application, estimating the e�ects of housing shocks in the

SW model using U.S. data. We �nd impulse responses to housing shocks in line with the

existing theoretical and empirical literature. Furthermore, our results suggest that the richer

the structure of the policy model, the less reliant the augmented policy model may be on

unobserved factors to propagate the missing shock. Since operational DSGE models in use

at central banks are large-scale models, policy experiments conducted in augmented versions

of such models might only moderately rely on unobserved factors, which reduces the reliance
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on nonstructural dynamics.

We think that augmenting the policy model to study the e�ects of missing shocks, as

opposed to directly using di�erent models, is sensible for at least three reasons. First,

the policy model provides a careful micro-foundation of the main transmission channels of

monetary policy, which we would like to preserve in the analysis of the alternative scenarios

involving missing sectors. Second, the augmented policy model can be used to conduct policy

experiments, assuming that the modelling of the missing sector is policy invariant. Third,

communications between sta� and policy-makers often rely on the policy model.

We emphasize that the approach presented in this paper is not an ideal approach to

deal with misspeci�cation. The only correct approach is to develop models with a careful

articulation of the sector of interest, and the interaction of that sector with the rest of

the economy. Our methodology provides a compromise between the use of reduced-form

models and fully structural models, preserving the structural dimensions of the policy model

that best �t the data. This argument is also the corner stone of the DSGE-VAR approach

discussed in Del Negro and Schorfheide (2009). Although we design our modelling and

estimation approaches to be of practical use in policy institutions, these tools can be of

broader applicability, for instance by macroeconomists who want to evaluate the ability of a

DSGE model to propagate shocks of interest.

One paper that is related to ours is Cúrdia and Reis (2010), which estimate DSGE models

with correlated disturbances, and use these models to account for empirical regularities in the

US business cycle. We di�er from their study because we generate correlated disturbances

through a speci�c channel, which we identify using information from auxiliary models.

The remainder of the paper is structured as follows. In Section 2, we provide a description

of the methodology. In Sections 3 and 4 we illustrate the approach using simple examples

with a known data generating process. In Section 5, we turn to an empirical example using

the DSGE model of Smets and Wouters (2007) to track the e�ects of house price shocks.

Section 6 concludes the paper.
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2 Methodology

The baseline model � the policy model � has the following form:3

Xt = A1EtXt+1 + A2st (1)

where Xt is a vector of endogenous variables, Et is the expectation operator and st is a vector

of exogenous processes. All variables are measured as log-deviations from steady state. The

matrices A1 and A2 are functions of the DSGE parameter vector ΘP , though we suppress

this notation for convenience.

The exogenous processes are modeled as a VAR:

st = Bst−1 + Cεt, (2)

where matrices B and C are again functions of the DSGE parameter vector ΘP , and εt is a

vector of orthogonal structural shocks.

The endogenous variablesXt can be partitioned into predetermined endogenous variables,

Zt, and non-predetermined endogenous variables, zt:

Xt ≡

 zt

Zt


so that the state space representation of the rational expectations equilibrium can be written

as:

zt = DSt, (3)

St = GSt−1 +Hεt, (4)

3This formulation is not restrictive. Lags and expectations of variables in periods beyond t + 1 can be
included by de�ning them as additional variables to be included in X.
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where

St ≡

 Zt

st

 , (5)

Here, St is the state vector collecting together the ns × 1 vector of exogenous processes

st, and the predetermined endogenous variables, Zt.
4

In the VAR model for the exogenous processes, (2), B and C are usually assumed to be

diagonal. The assumptions that B is diagonal and that the shocks εt are orthogonal have

two key advantages. First, these assumptions reduce the number of parameters in the model.

Second, they add to the ability of the model to tell coherent stories. Because the structural

shocks are given an economic interpretation, it is important that innovations to them are

orthogonal. Orthogonality makes it easier to trace through the e�ects of an exogenous

impulse through the structural shock processes and onto the endogenous variables in the

model.

We model the variables that proxy the e�ects of the missing channel, assuming that the

model is now driven by a new vector of exogenous processes s̃t:

Xt = A1EtXt+1 + A2s̃t (6)

The process s̃t is de�ned as follows:

s̃t = st + sFt , (7)

st = Bst−1 + Cεt, (8)

sFt = Λ1Ft + Λ2mt, (9)

Ft = Φ1Ft−1 + Ξ1ut, (10)

mt = Φ2mt−1 + Ξ2ut. (11)

4Again, matrices D, G and H are functions of the DSGE parameter vector ΘP , but we suppress this
dependence for notational convenience.
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This means that the state vector S̃t of the model becomes:

S̃t ≡



Zt

st

Ft

mt


, (12)

and that the rational expectations solution is given by:

zt = D̃S̃t, (13)

S̃t = G̃S̃t−1 + H̃νt, (14)

where νt ≡ [ε′t u′t]
′, and Et [ε′t ut] = 0.

We refer to the model described by equations (7)-(11) and (12)-(14) as the augmented

policy model.5

The vector s̃t that enters in the augmented policy model is the sum of two components.

The �rst component st is the vector of traditional DSGE exogenous processes. Innovations

to this component can be traced through the model and the story of how that shock a�ects

the endogenous variables can be constructed as usual. The second component sFt is a ns̃× 1

vector of exogenous processes, which consists of weighted-averages of unobserved factors Ft,

and observable variables mt. The factors are driven by an exogenous disturbance ut, which

captures the missing shock. mt is an nm × 1 vector of observable variables that summarizes

the evolution of the missing sector.6 For instance, in the housing model mt contains data on

house prices. Φ1 and Φ2 are coe�cient matrices that capture the dynamics of the factors and

the proxy for the missing sector.7 The matrices Ξ1 and Ξ2 control how the shock u a�ects

5Ireland (2004) addresses model misspeci�cation generalizing the measurement equation to include mea-
surement errors modelled as VAR , while Boivin and Giannoni (2006) introduce additional observable vari-
ables in the estimation through a dynamic factor structure.

6In Section 5.3 we generalize equation (11), allowing for proxy variables mt to depend on variables in the
policy model.

7We assume, without loss of generality, that the equations for the factors F and missing channel proxy
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the factors and missing channel proxy variables.

In the exercises presented in the paper, we consider two di�erent speci�cations of equation

(9). In the �rst speci�cation , we set all elements of Λ1 to zero, i.e. we drop the unobserved

factors Ft. The missing shock ut propagates in the augmented policy model through the

transmission mechanisms already embedded in the model, and through the law of motion

(11).8 This assumption implies that the structure of the policy model is su�ciently rich to

propagate the missing shock. In the second speci�cation, we set all elements of Λ2 to zero.

The missing shock ut propagates in the augmented policy model through the transmission

mechanisms already embedded in the model, and through the law of motion of the unobserved

factors (10). We assume that there are two unobserved factors, F1,t and F2,t, which follow

a V AR(1) process. We �nd that this parsimonious speci�cation is su�cient to generate

impulse responses with hump shapes and persistence similar to those produced by large-

scale DSGE models. To identify the factors, we restrict the top 2 × 2 block of Λ2 to be an

identity matrix. This normalization solves the rotational indeterminacy problem ruling out

linear combinations that lead to observationally equivalent models (Bernanke et al., 2005

and Baumeister et al., 2010). It would be possible to consider speci�cations where both Λ1

and Λ2 are di�erent from zero, but we leave that for future research.

We assume that the unobserved factors can either load on all exogenous processes or on

a subset, imposing zero restrictions in one or more rows of matrices Λ1 or Λ2. If and where

to impose zero restrictions depends on two considerations. First, in operational models with

20 or more exogenous processes, estimating a full matrix Λ1 or Λ2 could create identi�ca-

tion problems and would require a non-trivial amount of time.9 Second, the choice of zero

restrictions depends on the type of propagation (and story) we believe is plausible. For in-

variables m are written in companion form so that Φ1 and Φ2 may contain the coe�cients of lag polynomials
of any order.

8The missing shock ut propagates through the existing transmission mechanism in the model because it
a�ects mt via equation (11) and hence sFt via equation (9) and thus s̃t via equation (7). The e�ect on s̃t is
propagated through the model's existing transmission channels because the A2 matrix in (6) is the same as
the A2 matrix in the policy model (1).

9Whether there would be identi�cation problems would depend on how many impulse responses we target,
and the number of target periods in the estimation exercise described in the next subsection.
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stance, if we judge that the missing shock mostly a�ects aggregate demand, we could impose

zero restrictions on the coe�cients loading on processes that predominantly a�ect the model

through their e�ect on potential supply (eg the TFP process). We would narrow down the

channels through which the shock propagates (and rule out potentially counterfactual be-

havior of variables that are not targeted in the estimation), and simplify the interpretation

of the results. For these considerations, we think that the judgment of the economist is a

central part of the process, and cannot be replaced by purely statistical tools.

One feature of our approach is that the modelling of the missing sector does not a�ect

the transmission of shocks already present in the policy model. While this dimension might

be of interest, allowing for feedback between existing shocks and the missing sector would

complicate substantially the estimation exercise, making the procedure less practical to use

in short periods of time. In particular, to use the impulse-response matching procedure we

would need to rely on auxiliary models to estimate impulse responses to more shocks in

the presence of the missing sector. In a companion paper (Caldara et al., 2012), we use

likelihood-based Bayesian techniques to estimate the e�ects of missing shocks, allowing for

feedback between the missing sector and the remaining model structure. A key advantage

of a full information approach is that it does not require the use of an auxiliary model,

which can be useful when the economist has little knowledge about the e�ects of the missing

shocks.10

2.1 Estimation

Our methodology involves the estimation of three di�erent models. First we estimate the

parameters of the policy model, ΘP . In central banks, these estimates are already available to

the economist. In our exposition, we estimate ΘP using likelihood-based Bayesian estimation,

as it is common practice in many central banks.11 We denote by Θ̂P the mean of the posterior

10One possibility to bridge the two approaches is to elicit prior distributions on the deep parameters of
the DSGE model from impulse response functions as proposed by Lombardi and Nicoletti (2011).

11For an overview of the estimation of DSGE models, see Fernández-Villaverde (2010) and Schorfheide
(2011).
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distributions.

Second, we estimate the auxiliary model. We summarize inference from auxiliary models

by impulse responses of selected variables to the shock of interest, which we denote by Ψ̂.12

Third, we estimate the augmented policy model. We partition the parameters in two

groups. The �rst group is composed of all the parameters of the baseline policy model ΘP .

The second group includes all parameters of the augmented block:

ΘAP ≡ {Λ1,Λ2,Φ1,Φ2}.

We estimate the parameters ΘAP to minimize a measure of the distance between the

impulse responses generated by the augmented policy model, denoted by Ψ(ΘAP ,ΘP ), and

those from the auxiliary model Ψ̂. We estimate ΘAP , �xing the parameters of the baseline

policy model to their posterior mean Θ̂P . This choice is dictated by practical considerations,

as the analysis needs to be conducted in a short period of time. Furthermore, impulse

responses to the missing shock might have little information on the deep parameters of the

baseline policy model. Our estimator of ΘAP is the solution to:

J = min
ΘAP

[Ψ̂−Ψ(ΘAP |Θ̂P )]′V −1[Ψ̂−Ψ(ΘAP |Θ̂P )],

where V is a matrix of weights.13 We include in the objective function J the �rst 20 periods

of each impulse response.

To perform the minimization of the loss function, we use the version of the CMA-ES

evolutionary algorithm developed by Andreasen (2010). This algorithm performs well in

�nding global optima of ill-behaved objective functions such as the likelihood functions of

DSGE models. In our experience, this algorithm is more reliable and robust than gradient

12Here we use Ψ to represent NK × 1 vectors formed by stacking the impulse responses of N variables for
K periods.

13We typically choose V to be the identity matrix. However, when Ψ̂ are impulse responses from a
SVAR identi�ed using a Cholesky decomposition, we give smaller weight to the responses that are zero by
assumption, as in Christiano et al. (2005). For the responses that are assumed to be zero by the Cholesky
identi�cation assumption, we set the corresponding entry in V to 10.
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based search methods.

2.2 Evaluation

We validate the augmented policy model by studying the IRFs of variables that are not

targets in the estimation.14 The idea is to check whether the dynamics of such variables

behave reasonably. For instance, in Section 5 we validate the SW model augmented with

a housing sector studying the (unrestricted) IRFs of private consumption, investment, real

wages, and hours worked to a housing demand shock. If we think the behavior of some of

these variables is in contrast with the likely e�ects of a housing demand shock, we either

re-estimate the model modifying the target variables, or we re-estimate the model imposing

additional restrictions in the augmented (housing) block.

This procedure is well suited to validate the model, given that our main objective is to

have an augmented policy model capable of explaining the propagation of missing shocks and

that is useful for policy analysis. We do not use root mean square errors or likelihood-based

criteria because a good forecasting model might not necessarily be a good model for policy

analysis.

3 The E�ects of Oil Price Shocks

In this section, we investigate how to augment a policy model to track the e�ects of oil price

shocks. We �rst describe a DSGE model with a micro-founded oil sector. We use this model

as the data generating process in the estimation exercise. We then describe and estimate a

policy model that does not contain the oil sector. Finally, we augment the policy model as

described in Section 2 to track the e�ects of oil shocks.

14In addition we also study the behavior of variables that are targets in the estimation, but at horizons
that are not targeted, i.e. in our estimation exercise at horizons larger than 20.
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3.1 The Data Generating Process

We take the oil model described by Nakov and Pescatori (2010a,b) as the data generating

process (DGP). In this model, the oil sector has two players: a dominant producer, repre-

senting the OPEC cartel, which has monopoly power, and a set of atomistic producers, who

act under perfect competition and restrain the market power of the cartel. These assump-

tions imply that the oil price and the oil supply are endogenous variables, that react to all

shocks in the economy and to the conduct of monetary policy. For convenience, we report

the log-linear equilibrium conditions of the model in the Appendix.

We describe the calibration of the model in Table 1, which relies on the estimates for the

great moderation period documented in Nakov and Pescatori (2010a).15 We use the DGP

to produce 500 observations for output growth, in�ation, interest rate, and the growth rate

of oil prices.

[ADD TABLE 1 HERE]

3.2 The Policy Model

The policymaker has access to a smaller model, which does not contain the oil sector. The

log-linear equilibrium conditions are:

yt = Etyt+1 − (it − Etπt+1 − rret ),

rret = −(1− ρa)at,

πt = βEtπt+1 + λ(yt + νt),

it = φiit−1 + (1− φi)(φππt + φyyt) + rt.

There are three exogenous processes: a technology shock at, a mark-up shock νt and

15Compared to Nakov and Pescatori (2010a), we increase the standard deviation of the technology shock.
The reason is that, compared to the original paper, we drop the shock to the time discount factor because
the presence of four shocks while using only three observed variables created identi�cation problems.
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monetary policy shock rt. The exogenous processes evolve as:

at = ρaat−1 + εat ,

νt = ρννt−1 + ενt ,

where rt is a an iid innovation with mean zero and standard deviation σr.

[ADD TABLE 2. HERE]

We estimate the policy model using Bayesian maximum likelihood on data simulated

from the model in section 3.1, which includes the oil sector.16 Thus, relative to the true

DGP, the estimated policy model is misspeci�ed. The observed variables are output growth,

in�ation, and the nominal interest rate. Estimation results are reported in Table 2. The

mean estimate for nearly all parameters is close to the true value. The only coe�cient for

which the true value does not lie within one standard deviation is φy. This bias is largely

due to the misspeci�cation of the policy model.17 Yet, misspeci�cation seems to be mostly

captured by the exogenous processes. In particular, the correlation between the smoothed

series for the technology and the mark-up processes is 0.51. Hence the assumption that the

processes are uncorrelated is clearly violated.

3.3 The Augmented Policy Model

We now assume that an economist wants to estimate the e�ects of a 10% increase in oil

prices on output, in�ation, and the interest rate, without having access to the data generat-

ing process described in Section 3.1.

[ADD TABLE 3 HERE]

16Since we estimate the model using 500 observations, the prior distributions receive a very small weight
in the estimation. With such a long sample, we could have as well estimated the model using maximum
likelihood.

17The use of 500 observations should rule out small sample bias. We re-estimated the model using 1000
observations and the results were largely unchanged.
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The policy model described in the previous section is similar to the DGP. The main

di�erence is that in the policy model, the mark up process is exogenous. This misspeci�cation

means that the economist cannot identify correctly the sources of �uctuations in the mark-up

and in the e�cient real interest rate. Yet, the transmission mechanisms embedded in the two

models are nearly identical. For this reason, we augment the policy model without relying

on unobserved factors (that is, assuming that Λ1 = 0 in the context of equation 9):

s̃t = st + Λ2p
o
t ,

st = Bst−1 + Cεt,

pot = ρop
o
t−1 + uot .

We assume that oil prices pot follow an AR(1) process, and they only react to an exogenous

oil price shock uot . We allow the oil price process to a�ect all of the existing exogenous

processes, i.e. we do not restrict any element of Λ2 to zero.

We �x all parameters of the policy model to the posterior means reported in Table 2.

We estimate the loading factors Λ2 and the persistence parameter for the oil process ρo

matching impulse responses to an oil shock produced by an auxiliary model, which in this

exercise is the DGP described in Section 3.1. The reason is that in this controlled experiment

we want to test whether our method is able to match the true IRFs. In real life applications,

when the DGP is unknown, the auxiliary model can be a SVAR.18 We report in Table 3 the

parameter estimates. We plot in Figure 1 the target impulse responses (blue line), and the

impulse responses from the augmented model (red dashed). The estimation targets the �rst

20 periods only (in the �gure, periods 21 to 40 are not targeted).

[ADD FIGURE 1 HERE]

We target the impulse responses of in�ation, interest rate, oil prices, and output growth.

18Using our data set, the identi�cation of an oil shock using a SVAR produces impulse responses that are
very close to those of the data generating process. Hence results based on matching impulse responses from
the SVAR are almost identical to those presented here.
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The augmented model is able to match these responses almost perfectly, loading the process

for oil prices on the technology and mark-up processes. These loadings are consistent with

how the oil technology shock enters in the true model, where it a�ects both the mark up

and the real e�cient rate. The �gure also shows the response of the output level which,

not surprisingly, perfectly resembles the response in the DGP. However, the response of the

output gap between the two models is very di�erent. In the augmented model, the oil shock

loads mostly on the mark-up shock, which does not a�ect potential output. As a result, the

output gap in the augmented model closely follows the dynamics of the output level.

[ADD FIGURE 2 HERE]

Figure 2 plots impulse responses from the DGP (left column) and from the augmented

policy model (right column) to a 10% increase in oil prices for di�erent values of the Taylor

rule coe�cient on in�ation. The augmented policy model is able to correctly identify changes

in the responses of output, in�ation, and the interest rate generated by a less aggressive stance

of monetary policy on in�ation. The small quantitative errors are due to the fact that in the

augmented policy model, we neglect the feedback e�ect of the change in monetary policy on

oil prices, which in the DGP happens via the output gap in the oil mark-up determination.

The augmented policy model does a poor job in tracking the e�ects of the policy change on

the output gap (for the same reasons explained in the previous paragraph).

4 The E�ects of House Price Shocks

In this section, we consider a model where the missing channel is more deeply embedded

within the endogenous structure of the economy. Speci�cally, we assume that the data

generating process is a model where there is an important role for house prices in determining

consumption. We follow the same steps as in Section 3. First, we specify the data generating

process; then we specify and estimate the policymaker's (misspeci�ed) model; we �nally

augment the policymaker's model to try to account for the missing channel.
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4.1 The Data Generating Process

We use the model of Iacoviello (2005). Here, we provide a general description of the model,

the structural equations of the model can be found on page 745 in Iacoviello (2005). The

model is a variant of the Bernanke et al. (1999) New Keynesian model where endogenous

changes in the balance sheets of �rms create a �nancial accelerator e�ect. The model also

includes collateral constraints tied to the value of housing property for �rms which is used as

one of the factors of production. These features create a �nancial accelerator where demand

shocks are ampli�ed. When demand rises, asset prices rise, which in turn increases the

borrowing capacity of debtors (i.e �rms). This boosts consumption spending and investment.

As consumer prices rise, the real value of debtors' outstanding obligations falls and real net

worth rises. Because borrowers have a higher propensity to spend than lenders, there are

further increases in demand.

[ADD TABLE 4 HERE]

As noted, the main innovations of the model are related to the behavior of demand.

The remainder of the model is standard. Calvo price setting leads to a conventional New

Keynesian Phillips curve relating in�ation to marginal costs. The monetary policymaker is

assumed to operate a reaction function for the nominal interest rate, which has a Taylor

(1993) formulation adjusted to include interest rate smoothing. The model is driven by four

shocks: to technology (at), to the Phillips curve (ut), to monetary policy (rt), and to housing

preferences (jt). The housing preference shock is a stochastic variation in the relative weight

on housing in consumers' utility functions. We refer to this shock as a house price shock

(following Iacoviello, 2005) in what follows.

Iacoviello (2005) sets the parameters of the model using a minimum distance estimator

that matches the impulse responses of the model to those in an identi�ed VAR estimated on

US data. For our data generating process, we largely rely on Iacoviello's reported parameter

estimates, and the calibration is reported in Table 4. We use the DGP to produce 500

observations for output growth, in�ation, interest rate, and house prices.
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4.2 The Policy Model

We assume that the policy model is the same three-equation New Keynesian model described

in Section 3.2. The only exception is that, following Iacoviello (2005), we write the model in

terms of output growth instead of the output gap and the Taylor rule is assumed to respond

to the output level rather than the output gap.

We estimate the parameters of the policy model using Bayesian Maximum likelihood.

The central bank observes data on output growth, in�ation, and the nominal interest rate.

[ADD TABLE 5 HERE]

Estimation results are reported in Table 5. The policy model lacks mechanisms capable

of generating persistence in the e�ects of exogenous shocks embedded in the true model.

For this reason, the degree of price stickiness and the autocorrelation coe�cient for the

technology process display a marked upward bias. Furthermore, part of the volatility in the

data generated by the house preference shock, is accounted by the estimated volatility of the

mark-up shock, which is also substantially larger than the true volatility of this shock in the

data generating process.

4.3 The Augmented Policy Model

To incorporate the e�ect of house prices in the policy model, we consider two alternative

augmented policy models. In both exercises house prices, the proxy variable, follow an AR(1)

process:

pht = ρhp
h
t−1 + uht . (15)

For the �rst exercise, we check how a shock to house prices uht propagates in the aug-

mented policy model without relying on unobserved factors (Λ1 = 0). In the estimation

exercise, we keep all parameters of the policy model �xed to the posterior means reported

in Table 5.

[ADD TABLE 6 HERE]
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We estimate the loading factors Λ2 and the persistence parameter for the housing process

ρh matching the responses for output, in�ation, the interest rate, and house prices to a

housing shock obtained from the DGP. We report in Table 6 the estimated parameters.

House prices load mostly on the technology process at.

[ADD FIGURE 3 HERE]

We plot in Figure 3 the target impulse responses (blue line), and the impulse responses

from the augmented model (red dashed). The estimation targets the �rst 20 periods (solid

line), while we leave periods 21 to 40 unrestricted. The augmented model captures well

the dynamics of house prices, but does a fairly poor job at mimicking the dynamics of the

remaining variables. The reason is simple: the propagation mechanisms embedded in the

policy model are not capable of generating the hump-shaped and persistent response due to

the �nancial accelerator in the DGP.

To mimic such dynamics, without altering the propagation of other shocks, we augment

the policy model introducing two unobserved factors as described in equations (7)-(11). The

loading factor matrix Λ1 is:

Λ1 =


1 0

0 1

λr,1 λr,2

 ,
and we set Λ2 = 0. We estimate the coe�cients Λ1, Φ1, Ξ1 and ρh targeting the same impulse

responses as in the previous exercise.

[ADD FIGURE 4 HERE]

Figure 4 plots the target responses (blue line) and the responses generated by the aug-

mented policy model (red dashed line). The augmented policy model does a very good job

at tracking the true impulse responses, although it slightly underestimates the persistence at

longer (untargeted) horizons. Instead of reporting the estimates for the loading coe�cients

Λ1, which are hard to interpret, Figure 5 plots sFt , the process-speci�c factors.

[ADD FIGURE 5 HERE]
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The mark-up factor sFu,t is 1 order of magnitude larger than the factors loading on the

technology and monetary processes. In fact, setting λ1,a, λ1,r, and λ2,r to zero, the impulse

responses from the augmented policy model are nearly unchanged. These results are not

surprising, given that the housing shock in the Iacoviello (2005) model induces negative

correlation between output and in�ation, which can be also generated by a mark-up shock.

Since the Taylor rules in the policy model and the DGP are similar, the policy response

in both models is also very close. The technology process is also capable of generating

negative correlation between output and in�ation. In a separate exercise (not reported), we

re-estimate the augmented policy model restricting all elements of Λ1 to zero, except for the

loading factors on the technology process. This restricted version of the model is capable of

generating impulse responses that are nearly identical to the responses reported in Figure 4.

[ADD FIGURE 6 HERE]

Figure 6 plots impulse responses from the data generating process (left column) and from

the augmented policy model (right column) to an increase in house prices for di�erent values

of the Taylor rule coe�cient on in�ation. The augmented policy model is able to correctly

identify the qualitative changes in the responses of output, in�ation, and the interest rate

generated by a less aggressive response of monetary policy to in�ation. The augmented

policy model also does a good job capturing the quantitative response of output, while it

underestimates the stronger response of in�ation and the interest rate when monetary policy

responds less aggressively to in�ation. The reason is that the augmented policy model lacks

su�cient endogenous persistence to generate changes in the in�ation response, generating

such persistence through the (policy invariant) unobserved factors. Notice that di�erences

in quantitative results are not due to the lack of endogenous response in house prices, which

in the data generating process and in the augmented policy model are nearly identical.19

19It is worth noting that house price responses in the data generating process are little a�ected by changes
in the coe�cients of the monetary policy rule.

20



5 Housing in the Smets and Wouters (2007) Model

In Sections 3 and 4 we estimated the policy and augmented policy models on simulated data.

Results suggest that the speci�cation of the augmented policy model is �exible enough to

generate responses in line with the data generating process and that are easy to interpret.

In this section, we apply our methodology in a more realistic environment. In particular, we

use the Smets and Wouters (2007) (henceforth SW) model as the policy model. We augment

the SW model to study the implications of alternative assumptions about the future path of

house prices for the variables in the model. Although the SW model includes a wide range

of frictions and transmission channels, it does not include the housing market. Therefore,

we use a small VAR to help us adjust the baseline DSGE model projections in the light of

alternative house price scenarios. We conduct estimation exercises using US data.

We proceed as follows. In Section 5.1, we brie�y describe the SW model and the US data

set that we assume to be available for the forecaster. In Section 5.2, we describe the VAR that

is used to identify the e�ects of house price shocks on a small number of key macroeconomic

variables. In Section 5.3 we incorporate shocks to house prices into the DSGE model. This

is done along the lines discussed in Section 4 for the Iacoviello (2005) model.

5.1 The Smets and Wouters (2007) Model

We use the medium-scale DSGE model of Smets and Wouters (2007). As noted in the

Introduction, this model has been used as a blueprint for the operational DSGE models

developed at a number of central banks. It is also an important benchmark model in the

literature. Given that the model is very well known, we only provide a sketch of its structure.

The model includes a wide variety of nominal and real frictions. Households maximize

utility subject to habit formation in their consumption choices. They accumulate capital

(which they rent to �rms) subject to costs of adjusting the rates of investment and utilization.

Households (via unions) also supply di�erentiated labor to �rms and set the nominal wage
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according to a Calvo scheme. Wages that are not re-optimized are increased in line with a

weighted average of trend nominal wage growth and lagged in�ation.

Firms rent capital services and labor from households which are used to produce output.

Output is used for consumption, government purchases, and investment. Retailers set prices

according to a Calvo mechanism, with a partial indexation of prices that are not re-optimized

that is analogous to the scheme for nominal wages described above. Monetary policy is

conducted through a reaction function for the nominal interest rate. The reaction function

speci�es that nominal interest rates respond to deviations of in�ation from the target, the

output gap, and the change of the output gap. The output gap is de�ned using a �exible-price

speci�cation of the model.

The model is driven by seven shocks: to the level of TFP; to the investment adjustment

cost function; to household preferences; to government spending; to price and wage mark-

ups; and to the monetary policy reaction function. Government spending and TFP shocks

are assumed to be correlated with each other. These shocks are designed to explain the

movements of seven data series: GDP growth; consumption growth; investment growth;

in�ation (GDP de�ator); the Fed funds rate; real wage growth; and hours worked.

[ADD TABLES 7 AND 8 HERE]

As in Smets and Wouters (2007), we estimate the parameters of the model using Bayesian

techniques. We estimate the model for the period 1984-2004 using the same dataset and prior

distributions as Smets and Wouters (2007). Estimation results are reported in Tables 7 and

8.

5.2 The VAR Model

We construct a small VAR along the lines of that estimated by Iacoviello (2005). We use

the output, in�ation and interest rate data from the Smets and Wouters (2007) data set.

For house prices, we use the OFHEO house price index (all transactions). We apply the

X12 seasonal adjustment process to seasonally adjust the data. We measure the house price
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relative to the GDP de�ator, which is the price series used to de�ne the in�ation measure in

Smets and Wouters (2007). The house price series starts in 1984Q1 and the Smets-Wouters

data set ends in 2004Q4. So this de�nes our sample.

We estimate a VAR(2) and identify a house price shock using a Cholesky decomposition

with the following ordering: nominal interest rate, in�ation, house prices and output. This

ordering follows Iacoviello (2005). We report the impulse responses to a shock to house prices

in Figure 7 (blue lines).

5.3 Incorporating House Price E�ects into the DSGE Model

We explore two options to introduce shocks to house prices in the SW model. Both op-

tions rely on two unobserved factors Ft, as the SW lacks a �nancial accelerator mechanism.

Furthermore, we assume that house prices follow an exogenous AR(2) process:

pht = φ1p
h
t−1 + φ2p

h
t−2 + shεt, (16)

where εt is an iid Gaussian disturbance with unit variance. We choose an AR(2) process for

house prices because it generates an impulse response for pht following an housing shock in

line with the response generated by the auxiliary model.

We �rst assume that the unobserved factors Ft load on all seven exogenous processes.

Results are presented in Figure 7. This approach does a very good job at matching the target

impulse responses (for output, in�ation, house prices and the nominal interest rate). This is

of little surprise, since loading the unobserved factors on seven exogenous processes grants

much �exibility. The model does also a good job at capturing the persistent response of

output, in�ation, and the interest rate from quarter 21 to 40 (untargeted). The four bottom

panels of Figure 7 plot the response of variables that are not targets, namely consumption,

investment, the real wage, and hours worked. These variables are key in providing a coherent

story for policy-makers. The response of consumption, investment, and hours worked is
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negative, while the response the real wage is very strongly positive. These responses are not

in line with most evidence on the e�ects of housing demand shocks. For instance, Iacoviello

and Neri (2010) document an increase in both private consumption and investment.

Figure 8 provides an explanation for this �nding. The dynamic responses are predom-

inantly driven by three shocks: investment-speci�c technology, government spending, and

price mark-up shocks. The decline in private consumption is due to the increase in govern-

ment spending, which increases output (target variable), but in the SW model crowds out

private demand. The decline in investment is due to the negative response in investment

speci�c technology. Finally, the decline in hours worked and the sharp rise in real wages is

due to a large but short-lived increase in the wage mark-up.

Guided by the counter-factual responses of private demand and labor market variables,

in the second experiment, we load the unobserved factors only on three processes: general

technology, risk premium, and price mark-up. We load on general technology because we

want to generate an expansion in real activity. We load on the risk premium because we

want to induce an increase in the interest rate faced by households and introduce a wedge

between such interest rate and the one controlled by the central bank. Finally, we load on

the price mark-up process because it helps to �ne-tune the response of in�ation. Figure 9

shows that, despite loading on only three processes instead of seven, our procedure still does

well in terms of matching the target responses, both in the short-medium run (targeted) and

in the long run (not targeted). In addition, the short-run responses of private demand and

labor market variables are all positive. The negative response at long horizons mimics the

negative response of output to the housing demand shock.20

[ADD FIGURE 11 HERE]

Figure 11 plots impulse responses to an increase in house prices for di�erent values of

the Taylor rule coe�cient on in�ation. As we can see, in contrast to the augmented policy

model in Section 4, the augmented SW model is able to generate di�erences in the response

20Instead of imposing zero restrictions on the loading matrix, we could have included a subset of these
variables in the auxiliary model and used the associated IRFs as targets in the estimation exercise.
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of in�ation associated with di�erent parameterizations of the monetary policy rule. One

possible explanation for this result may be the richer structure of the SW model, which may

allow the augmented policy model not to rely much on the (policy invariant) unobserved

factors.

Finally, we consider an alternative speci�cation of the house price equation (16). In

particular, we use in the augmented policy model the house price equation estimated in the

auxiliary VAR model. The advantage of this speci�cation is that we allow house prices to

depend on variables included in the policy model, so that we can produce a model-consistent

baseline forecast for pht . We use the equation from the auxiliary model because it provides a

reasonable reduced-form description of the evolution of house prices. The speci�cation of the

augmented policy model with the VAR equation for house prices generates IRFs and policy

implications in line with those reported for the benchmark model.21 The main reason is that

the evolution of output, in�ation, and the interest rate described by the policy model does

not explain much volatility in house prices. Yet, we believe that this generalization can be

useful when the proxy variable is endogenous to the variables modelled in the policy model.

6 Conclusions

In this paper, we consider the problem of how to analyze the e�ects of shocks that do not

appear explicitly within a DSGE model that is used to inform policy and forecast discussions.

To this end, we augmented a baseline DSGE model with an exogenous block that is intended

to capture the e�ects of shocks in the un-modelled sector. We estimated the parameters of

the additional block by matching impulse responses to the shock of interest from an auxiliary

model. We believe that our approach has broad applicability, and provides a practical way

to address an important problem.

We used our method to study the e�ects of oil price shocks and house price shocks in

21Not surprisingly, only the house price response shows a better �t to the target, although this improvement
does not a�ect the overall estimation. Results available on request.
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a three-equation New Keynesian model. We showed that the impulse response functions

produced by the augmented DSGE models are similar to those produced by richer models

with micro-founded oil and housing sectors. Furthermore, policy experiments conducted

in with the augmented DSGE models and the micro-founded models delivered very similar

conclusions. We then discussed an empirical application, studying the e�ects of house price

shocks in the United States using the Smets and Wouters (2007) model.
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A The Nakov-Pescatori (2010a,b) Model.

We provide a parsimonious description of the model. We refer to the original papers for

details.

The IS equation is:

yt = Etyt+1 − (it − Etπt+1 − rret ),

where yt is the output gap, it is the nominal interest rate, πt is in�ation, and rret is the

e�cient real interest rate, described by:

rret = −(1− ρa)
(1− so)

at +
so(1− ρz)
(1− so)

zt,

where s0 is the oil elasticity of gross output, at is the exogenous technology process, and zt

is the exogenous oil technology process. Both at and zt follow an AR(1) process:

at = ρaat−1 + εat ,

zt = ρzzt−1 + εzt ,

where ρa and ρz are persistence parameters and εat and ε
z
t are iid innovations with mean zero

and standard deviations σa and σz respectively.

The Phillips curve is:

πt = λ((1− so)yt + soνt) + βEtπt+1,

where

λ =
(1 + ψ)(µ− so)(1− θ)(1− βθ)

(µsl + (µ− 1)(1 + ψ)so)θ

is the slope of the Phillips curve. νt is the optimal oil price mark up, which in Nakov and

Pescatori (2010b) is a non-linear function of many state variables, including Lagrangian mul-
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tipliers associated with the maximization problem of the OPEC producer.22 We approximate

the optimal oil mark-up assuming that in�ation in the oil importing country is always zero.23

As a result, we obtain:

νt = νaat + νzzt + νyyt.

The mark up is a function of the technology process in the oil importing economy at, the

oil technology shock zt, and the output gap in the oil importing economy yt. The coe�cients

νa, νz, and νy are functions of various steady state ratios.

Finally, we close the model with the following Taylor rule:

it = φiit−1 + (1− φi)(φππt + φyyt) + rt,

where rt is a an iid innovation with mean zero and standard deviation σr.

22The OPEC producer chooses its price in order to maximize welfare of its owners. It also internalizes the
impact it has on global output and oil demand.

23Our assumption greatly simpli�es the oil mark-up function. The numerical simulation of the model with
this approximated oil mark-up matches closely the original Nakov and Pescatori (2010b) model. Results are
available upon request.

31



Name Value
Policy Rule

φπ 3.00
φy 0.54
φi 0.69
Other Deep Parameters
θ 0.48
ψ 1.00
β 0.9926
sl 0.64
sk 0.33
so 0.03
µ 15%
π∗ 0
Shock Autocorrelations
ρa 0.98
ρx 0.96
ρz 0.88

Shock Standard Deviations
σa*100 0.82
σr*100 0.21
σx*100 0.00
σν*100 15.18

Table 1: Calibration of structural parameters for the Nakov and Pescatori (2010b) oil model
used as data generating process and described in Section 3.1.
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Name Prior (1) Posterior (2)
Policy Rule

φπ Normal 2.00 0.50 2.84 (0.33)
φy Normal 0.40 0.10 0.36 (0.10)
φi Beta 0.50 0.20 0.70 (0.06)

Other Deep Parameters
θ Beta 0.50 0.20 0.59 (0.04)
ψ Gamma 1.00 0.25 1.00 (0.24)

Shock Autocorrelations
ρa Beta 0.50 0.20 0.98 (0.00)
ρν Beta 0.50 0.20 0.92 (0.02)

Shock Standard Deviations
σa*100 InvGamma 0.50 4.00 0.86 (0.03)
σr*100 InvGamma 0.50 4.00 0.21 (0.03)
σν*100 InvGamma 0.50 4.00 0.33 (0.07)

Table 2: Prior and posterior moments - Policy model used in the oil price example described
in Section 3.2. Column (1) reports the parameters of the prior distributions. Column (2)
reports posterior means and standard deviations (in parenthesis). See Section 3.3 for details.

λa λν λr ρo
0.0495 0.0756 0.0100 0.8814

Table 3: Estimates of parameters in the augmented policy model, where the targets in the
estimation are impulse response from the DGP. See Section 3.3 for details.

33



Name Value
Policy Rule

φπ 3.00
φy 0.50
φi 0.60
Other Deep Parameters
θ 0.75
η 1.01
β 0.99
γ 0.98
j 0.1
ν 0.03
m 0.89
X 1.05
Shock Autocorrelations
ρa 0.50
ρj 0.85
ρu 0.59

Shock Standard Deviations
σa*100 2.740
σj*100 24.89
σu*100 0.150
σr*100 0.290

Table 4: Calibration of structural parameters for the Iacoviello (2005) housing model used
as data generating process and described in Section 4.1.
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Name Prior (1) Posterior (2)
Policy Rule

φπ Normal 3.00 0.20 2.93 (0.10)
φy Normal 0.40 0.20 0.46 (0.06)
φi Beta 0.50 0.10 0.63 (0.02)

Other Deep Parameters
θ Beta 0.50 0.20 0.90 (0.03)

Shock Autocorrelations
ρa Beta 0.50 0.20 0.80 (0.02)
ρu Beta 0.50 0.20 0.44 (0.01)

Shock Standard Deviations
σa*100 InvGamma 0.50 2.00 2.92 (0.10)
σu*100 InvGamma 0.50 2.00 0.25 (0.01)
σr*100 InvGamma 0.50 2.00 0.28 (0.01)

Table 5: Prior and posterior moments - Policy model used in the house price example
described in Section 4.2. Column (1) reports the parameters of the prior distributions.
Column (2) reports posterior means and standard deviations (in parenthesis).

λa λu λr ρh
0.6447 0.00351 0.00015 0.8142

Table 6: Estimates of parameters in the augmented policy model, where the targets in the
estimation are impulse response from a SVAR.
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Name Prior (1) Posterior (2)
φ Normal 4.00 1.50 5.80 (1.11)
σc Normal 1.50 0.37 1.03 (0.12)
h Beta 0.70 0.10 0.56 (0.04)
ξw Beta 0.50 0.10 0.78 (0.08)
ξp Beta 0.50 0.10 0.80 (0.04)
ιw Beta 0.50 0.15 0.45 (0.16)
ιp Beta 0.50 0.15 0.30 (0.09)
ψ Beta 0.50 0.15 0.62 (0.11)
Φ Normal 1.25 0.12 1.48 (0.09)
rπ Normal 1.50 0.25 1.68 (0.22)
ρ Beta 0.75 0.10 0.86 (0.02)
ry Normal 0.12 0.05 0.14 (0.04)
r4y Normal 0.12 0.05 0.17 (0.03)
π Gamma 0.63 0.10 0.61 (0.07)

100(β−1 − 1) Gamma 0.25 0.10 0.18 (0.04)

l Normal 0.00 2.00 0.60 (0.58)
γ Normal 0.40 0.10 0.50 (0.02)
α Normal 0.30 0.05 0.18 (0.02)

Table 7: Prior and posterior moments - Smets and Wouters (2007) model used in Section
5.3.Column (1) reports the parameters of the prior distributions. Column (2) reports poste-
rior means and standard deviations (in parenthesis).
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Name Prior (1) Posterior (2)
σa InvGamma 0.10 2.00 0.38 (0.03)
σb InvGamma 0.10 2.00 0.09 (0.02)
σg InvGamma 0.10 2.00 0.40 (0.03)
σI InvGamma 0.10 2.00 0.40 (0.05)
σr InvGamma 0.10 2.00 0.12 (0.01)
σp InvGamma 0.10 2.00 0.13 (0.02)
σw InvGamma 0.10 2.00 0.23 (0.03)
ρa Beta 0.50 0.20 0.92 (0.03)
ρb Beta 0.50 0.20 0.82 (0.08)
ρg Beta 0.50 0.20 0.97 (0.01)
ρI Beta 0.50 0.20 0.61 (0.07)
ρr Beta 0.50 0.20 0.28 (0.06)
ρp Beta 0.50 0.20 0.43 (0.16)
ρw Beta 0.50 0.20 0.67 (0.15)
µp Beta 0.50 0.20 0.34 (0.20)
µw Beta 0.50 0.20 0.44 (0.20)
ρga Beta 0.50 0.20 0.42 (0.11)

Table 8: Prior and posterior moments - Smets and Wouters (2007) model used in Section
5.3.Column (1) reports the parameters of the prior distributions. Column (2) reports poste-
rior means and standard deviations (in parenthesis).
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Figure 1: Impulse responses to an oil price shock in the DGP (blue solid line) and in the
augmented policy model (red dashed). The DGP is the Nakov and Pescatori (2010b) model.
See Section 3.3 for additional details.
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Figure 2: Impulse responses to an oil price shock in the DGP (left column) and in the
augmented policy model (right column) when the Taylor rule coe�cient on in�ation equals 3
(blue solid line), 2.25 (green dashed line), and 1.5 (red dotted line). The DGP is the Nakov
and Pescatori (2010b) model. See Section 3.3 for additional details.
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Figure 3: Impulse responses to a house price shock in the DGP (blue solid line) and in the
augmented policy model without unobserved factors (red dashed). The DGP is the Iacoviello
(2005) model. See Section 4.3 for additional details.
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Figure 4: Impulse responses to a house price shock in the DGP (blue solid line) and in the
augmented policy model with unobserved factors (red dashed). The DGP is the Iacoviello
(2005) model. See Section 4.3 for additional details.
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Figure 5: Impulse responses of the process-speci�c factors in the augmented policy model
with unobserved factors. The DGP is the Iacoviello (2005) model. See Section 4.3 for
additional details.
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Figure 6: Impulse responses to a house price shock in the DGP (left column) and in the
augmented policy model with unobserved factors (right column) when the Taylor rule coef-
�cient on in�ation equals 3 (blue solid line), 2.25 (green dashed line), and 1.5 (red dotted
line). The DGP is the Iacoviello (2005) model. See Section 4.3 for additional details.

43



0 10 20 30 40
-0.5

0

0.5
Output

0 10 20 30 40
-0.5

0

0.5
Inflation

0 10 20 30 40
-0.5

0

0.5
Nominal interest rate

0 10 20 30 40
-1

0

1
House price

0 10 20 30 40
-2

-1

0
Consumption

0 10 20 30 40
-5

0

5
Investment

0 10 20 30 40
0

10

20
Real Wage

0 10 20 30 40
-1

0

1
Hours Worked

Figure 7: Impulse responses to a house price shock in the augmented Smets and Wouters
(2007) model with unobserved factors. See Section 5.3 for additional details.
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Figure 8: Impulse responses of the process-speci�c factors in the augmented Smets and
Wouters (2007) model with unobserved factors. See Section 5.3 for additional details.
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Figure 9: Impulse responses to a house price shock in the augmented Smets and Wouters
(2007) model with unobserved factors. See Section 5.3 for additional details.
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Figure 10: Impulse responses of the process-speci�c factors in the augmented Smets and
Wouters (2007) model with unobserved factors. See Section 5.3 for additional details.
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Figure 11: Impulse responses to a house price shock in the Smets and Wouters (2007)
augmented with house price shocks when the Taylor rule coe�cient on in�ation equals 3
(blue solid line), 2.25 (green dashed line), and 1.5 (red dotted line). See Section 5.1 for
details.
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